Skip to contents

This function implements the Random Covariance Model (RCM) for joint estimation of multiple sparse precision matrices. Optimization is conducted using block coordinate descent.

Usage

spcov_bcd(samp_cov, rho, initial = NULL)

Arguments

samp_cov

\(p\) x \(p\) sample covariance matrix.

rho

Non-negative scalar. Induces sparsity in covariance matrix.

initial

Initial value for covariance matrix.

Value

\(p\) x \(p\) sparse covariance matrix estimate.

References

Wang, Hao. "Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM." 2012. https://arxiv.org/pdf/1205.4120.pdf