This function implements the Random Covariance Model (RCM) for joint estimation of
multiple sparse precision matrices. Optimization is conducted using block
coordinate descent.
     
    
    Usage
    spcov_bcd(samp_cov, rho, initial = NULL)
 
    
    Arguments
- samp_cov
- \(p\) x \(p\) sample covariance matrix. 
- rho
- Non-negative scalar. Induces sparsity in covariance matrix. 
- initial
- Initial value for covariance matrix. 
 
    
    Value
    \(p\) x \(p\) sparse covariance matrix estimate.
     
    
    References
    Wang, Hao.
"Two New Algorithms for Solving Covariance Graphical Lasso Based on Coordinate Descent and ECM." 2012. https://arxiv.org/pdf/1205.4120.pdf