Random Covariance Model
randCov.Rd
This function implements the Random Covariance Model (RCM) for joint estimation of multiple sparse precision matrices. Optimization is conducted using block coordinate descent.
Arguments
- x
List of \(K\) data matrices each of dimension \(n_k\) x \(p\).
- lambda1
Non-negative scalar. Induces sparsity in subject-level matrices.
- lambda2
Non-negative scalar. Induces similarity between subject-level matrices and group-level matrix.
- lambda3
Non-negative scalar. Induces sparsity in group-level matrix.
Value
A list of length 2 containing:
Group-level precision matrix estimate (Omega0).
\(p\) x \(p\) x \(K\) array of \(K\) subject-level precision matrix estimates (Omegas).